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Abstract: Unsteady boundary layer flow of an incompressible fluid over a stretching surface in the presence of 

a heat source or sink is studied. The unsteadiness in the flow and temperature fields is caused by the time 

dependence of the stretching velocity and the surface heat flux. The nonlinear boundary layer equations are 

transformed to nonlinear ordinary differential equations containing the Prandt l number, heat source or sink 

parameter and unsteadiness parameter. These equationsare solved by applying Fuzzy Adomian technique and 

compared with the existing numerical results obtained by using Shooting with Runge Kutta method. This focuses 

on solving the nonlinear ordinary and partial differential equations using Fuzzy Adomian decomposition 

method. 

Keywords: Fuzzy Adomian Decomposition Method, non-linear ordinary differential equation ,non-linear 

partial differential equation, Runge Kutta Method.   

 

I. Introduction 
The study of two-dimensional boundary layer flow due to a stretching surface is important in variety of 

engineering applications such as cooling of an infinite metallic plate in a cooling bath, the boundary layer along 

material handling conveyers, the aerodynamic extrusion of paper and plastic sheets. In all these cases, a study of 

flow field and heat transfer can be of significant importance since the quality of the final product depends on 

skin friction coefficient and surface heat transfer rate.  

Heating and cooling of fluids finds many industrial applications in power transmittion, manufacturing 

and electronics. Effective cooling techniques are greatly needed for cooling todays high-energy devices. 

Conventional heat transfer fluids such as water, ethylene glycol, and engine oil have poor heat transfer 

capabilities due to their low heat transfer properties. Further, as the thermal conducticities of metals are nearly 

three times higher than these fluids, it would be desirable to combine the two substances to produce a heat 

transfer medium that behaves like a fluid with the thermal conductivity of a metal. 

The problem of heat transfer from boundary layer flow driven by a continuous moving surface is of 

importance in a number of industrial manufacturing processes. Several authors have been analysed in various 

aspects of the pioneering work of Sakiadis (1961). Crane (1970) have investigated the steady boundary layer 

flow due to stretching with linear velocity.Vleggaar et al. (1977) have analysed the stretching problem with 

constant surface temperature and Soundalgekar et al. (1980) have analysed the constant surface velocity. 

Hashim et al. (2006) applied Adomian decomposition method to the classical Blasius equation. 

Wazwaz (1997) used Adomian decomposition method to solve the boundary layer equation of viscous flow due 

to a moving sheet .  Awang  Kechil and Hashim (2009) used  Adomian decomposition method to get the 

approximate analytical solution of an unsteady boundary layer problem over an impulsively stretching sheet. 

The heat transfer over an unsteady stretching surface with prescribed heat flux discussed in detail by Ishak et al. 

(2003). 

Awang Kechil and Hashim (2009) applied Adomian decomposition method to a two by two system of 

nonlinear ordinary differential equations of free-convective boundary layer equation. Hayat et al. (2009) 

analysed the MHD flow over a nonlinearly stretching sheet by employing the Modified Adomian decomposition 

method. 

 

II. Formulation Of The Problem 
The formulation of the problem presented by Elsayed M.A. Elbashbeshy et al.(2010) is described below  

Consider the unsteady two-dimensional laminar boundary layer flow of an incompressible fluid over a 

continuous moving stretching surface. Assume that the surface is stretched with velocityU𝜔(𝑥, 𝑡) =
𝛼𝑥

1−𝛾𝑡
  along 
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the x axis by keeping the origin fixed, where the y axis is normal to the x axis and also assume that the surface 

being subjected to a variable heat flux Q 𝜔 𝑥, 𝑡 =
𝛽𝑥

1−𝛾𝑡
 . 

 

The basic boundary layer equations that govern momentum and energyrespectively are 

 
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑥
= 0                                                                                                                    (4.1) 

 
𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
= 𝑣

𝜕2𝑢

𝜕𝑦2                                                                                                (4.2) 

 
𝜕𝑇

𝜕𝑡
+ 𝑢

𝜕𝑇

𝜕𝑥
+ 𝑣

𝜕𝑇

𝜕𝑦
=

𝑘

𝜌𝑐𝑝

𝜕2𝑇

𝜕𝑦2 +
𝑄

𝜌𝑐𝑝
(𝑇 − 𝑇∞ )                                                                   (4.3) 

 

subject to the boundary conditions 

 

y = 0 : u = 𝑈𝜔 , v = 0, 
𝜕𝑇

𝜕𝑦
= −

𝑞𝜔

𝑘
                                                                                    (4.4) 

y → ∞: 𝑢 = 0, 𝑇 = 𝑇∞ 

 

where u and v are the velocity components in the the x and y directions respectively, T is the fluid temperature 

inside the boundary layer, t is the time, k is the thermal conductivity, ν is the kinematics viscosity, 𝑐𝑝  is the 

specific heat at constant pressure, 𝜌 is the density, Q>0 represents a heat source and Q <0 represents a heat sink, 

𝑇∞ is the temperature far away from the stretching surface, and α,b and γ are,constants,where 𝛼 > 0, 𝛽 ≥ 0 ,
𝛾 ≥ 0 and 𝛾𝑡 < 1. Both 𝛼 𝑎𝑛𝑑 𝛾  have dimension (𝑡𝑖𝑚𝑒)−1. 

               The equation of continuity is satisfied if we choose a stream function ψ(x, y) such that 

                        𝑢 =
𝜕𝜑

𝜕𝑦
,        𝑣 =

−𝜕𝜑

𝜕𝑥
 . 

 

The mathematical analysis of the problem is simplified by introducing the following dimensionless similarity 

variables: 

 

𝜂 =  
𝛼

𝑣(1 − 𝛾𝑡)
𝑦 

𝜓 𝑥, 𝑦 =  
𝛼𝑣𝑥2

 1−𝛾𝑡  
𝑓(𝜂)                                                                           (4.5) 

𝑇 = 𝑇∞ +
𝑞𝜔

𝑘
  

𝑣 1−𝛾𝑡  

𝛼
 𝜃(𝜂). 

Substituting (4.5) into (4.2) and (4.3), we obtain the following set of ordinary differential equations: 

𝑓 ′′′ + 𝑓𝑓 ′′ − 𝑓 ′
2
− 𝐴  𝑓 ′ +

1

2
𝜂𝑓 ′′ = 0                                            (4.6) 

𝜃 ′′ + 𝑃𝑟  𝑓𝜃 ′ − 𝑓 ′𝜃 −
𝐴

2
 𝜃 + 𝜂𝜃 ′ + 𝛿𝜃 = 0                                 (4.7) 

The boundary conditions (4.4) now become 

𝜂 = 0:  𝑓 = 0, 𝑓 ′ = 1, 𝜃 ′ = −1                                                          

𝜂 → ∞: 𝑓 ′ = 0 , 𝜃 = 0                                                                       (4.8) 

 

where the primes denote differentiation with respect to 𝜂, 𝐴 =
𝛾

𝛼
 is a parameter that measures the 

unsteadiness,Pr =  
𝜇𝑐𝜌

𝑘
 is the Prandtl number ( µ is the viscosity), 

𝛿 =
𝑄𝑘

𝜇𝑐𝜌

𝑅𝑒𝑥

𝑅𝑒2
𝑘
 is the dimensionless heat source or sink parameter, 𝑅𝑒𝑥 =

𝑈𝜔

𝑣
𝑥 is the local Reynolds number, and 

𝑅𝑒𝑘 =
𝑈𝜔   𝑘

𝑣
 . The physical quantities of interest in this problem are the skin friction coefficient 𝐶𝑓  and the local 

Nusselt number 𝑁𝑢𝑥  which are defined as 

𝐶𝑓 =
𝜇 

𝜕𝑢

𝜕𝑦
 
𝑦=0

 𝜌𝑈2
𝜔 /2 

  , 𝑁𝑈𝑥 =
−𝑥 

𝜕𝑇

𝜕𝑦
 
𝑦=0

𝑇𝜔−𝑇∞
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III. Adomian Decomposition Method 
 

To solve the system of coupled ODEs using Adomian decomposition method, rearranging (4.6) and (4.7) as 

follows 

𝑓 ′′′ = −𝑓𝑓 ′′ + 𝑓 ′
2

+ 𝐴  𝑓 ′ +
1

2
𝜂𝑓 ′′                                                          (4.9) 

𝜃 ′′ = −𝑃𝑟  𝑓𝜃 ′ − 𝑓 ′𝜃 −
𝐴

2
(𝜃 + 𝜂𝜃 ′ + 𝛿𝜃                                                 (4.10) 

      by applying the standard procedure of Adomian decomposition method 

Eqs (4.9) and (4.10) becomes 

𝐿1𝑓 =  −𝑓𝑓 ′′ + 𝑓 ′
2

+ 𝐴  𝑓 ′ +
1

2
𝜂𝑓 ′′                                                       (4.11) 

 

𝐿2𝜃 = −𝑃𝑟𝐿   𝑓𝜃 ′ − 𝑓 ′𝜃 −
𝐴

2
 𝜃 + 𝜂𝜃 ′ + 𝛿𝜃                                        (4.12) 

Where 

𝐿1 =
𝑑3

𝑑𝜂3 and inverse operator 𝐿−1
1 .  =     .  𝑑𝜂𝑑𝜂𝑑𝜂

𝜂

0

𝜂

0

𝜂

0
 and 

𝐿2 =
𝑑2

𝑑𝜂2 and inverse operator 𝐿−1
2 .  =    .  𝑑𝜂𝑑𝜂

𝜂

0

𝜂

0
 

Applying the inverse operator on both sides of (4.11) and (4.12) 

𝐿−1
1𝐿1𝑓 = 𝐿−1

1  −𝑓𝑓 ′′ + 𝑓 ′
2

+ 𝐴  𝑓 ′ +
1

2
𝜂𝑓 ′′                                        (4.13) 

𝐿−1
2𝐿2𝜃 = −𝑃𝑟𝐿−1

2   𝑓𝜃 ′ − 𝑓 ′𝜃 −
𝐴

2
 𝜃 + 𝜂𝜃 ′ + 𝛿𝜃                            (4.14) 

Simplify eqs (4.13) and (4.14) we get 

𝑓 𝜂 = 𝜂 +
𝑎𝜂2

2
+     −𝑁1 𝑓 + 𝑁2 𝑓 + 𝐴  𝑓 ′ +

1

2
𝜂𝑓 ′′  

𝜂

0

𝜂

0

𝜂

0
𝑑𝜂𝑑𝜂𝑑𝜂  (4.15) 

And 

𝜃 𝜂 = 𝑏 − 𝜂 − 𝑃𝑟    𝑁3 𝑓, 𝜃 − 𝑁4 𝑓, 𝜃 −
𝐴

2
(𝜃 + 𝜂𝜃 ′) + 𝛿𝜃 

𝜂

0

𝜂

0
𝑑𝜂𝑑𝜂  (4.16) 

Where 𝑎 = 𝑓 ′′ 0 𝑎𝑛𝑑 𝑏 = 𝜃(0) are to be determined from the boundary conditions at infinity in (8). The non 

linear terms 𝑓𝑓 ′′, 𝑓 ′
2
, 𝑓𝜃 ′𝑎𝑛𝑑 𝑓 ′𝜃 can be decomposed as Adomian polynomials 

 𝐵𝑛 ,  𝐶𝑛
∞
𝑛=0

∞
𝑛=0 ,  𝐷𝑛𝑎𝑛𝑑  𝐸𝑛

∞
𝑛=0

∞
𝑛=0   as follows 

 

𝑁1 𝑓 =  𝐵𝑛 =∞
𝑛=0 𝑓𝑓 ′′                                                                                 (4.17) 

𝑁2 𝑓 =  𝐶𝑛
∞
𝑛=0 = (𝑓 ′)2                                                                               (4.18) 

 

𝑁3 𝑓, 𝜃 =  𝐷𝑛
∞
𝑛=0 = 𝑓𝜃 ′                                                                              (4.19) 

 

𝑁4 𝑓, 𝜃 =  𝐸𝑛
∞
𝑛=0 = 𝑓 ′𝜃                                                                              (4.20) 

 

Where 

𝐵𝑛(𝑓0, 𝑓1, …… , 𝑓𝑛), 𝐶𝑛 𝑓0, 𝑓1, …… , 𝑓𝑛  𝑎𝑛𝑑 𝐷𝑛 (𝑓0, 𝑓1, …… , 𝑓𝑛 , 𝜃0, 𝜃1 , … . , 𝜃𝑛) , 𝐸𝑛(𝑓0, 𝑓1, …… , 𝑓𝑛 , 𝜃0, 𝜃1, … . , 𝜃𝑛) 

are the so called Adomian polunomials. In the Adomian decomposition method (1986) f and 𝜃 can be expanded 

as the infinite series 

𝑓 𝑛 =   𝑓𝑛 =  𝑓0 + 𝑓1 + ⋯ + 𝑓𝑚

∞

𝑛=0

+ ⋯ 

 

𝜃 𝜂 =   𝜃𝑛 =  𝜃0 + 𝜃1 + ⋯ + 𝜃𝑚
∞
𝑛=0 + ⋯                                                  (4.21) 

The individual terms of the Adomian series solution of the equation (4.6)-(4.8) are provided below by the simple 

recursive algorithm 

𝑓0 𝜂 = 𝜂 +
𝑎𝜂2

2
                                                                                               (4.22) 

 

𝜃0 𝜂 = 𝑏 − 𝜂                                                                                                  (4.23) 

 

𝑓𝑛+1 𝜂 =     −𝐵𝑛 + 𝐶𝑛 + 𝐴  𝑓𝑛
′ +

1

2
𝜂𝑓 ′′  

𝜂

0

𝜂

0

𝜂

0
𝑑𝜂𝑑𝜂𝑑𝜂                           (4.24) 
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𝜃𝑛+1 𝜂 = −𝑃𝑟    𝐷𝑛 − 𝐸𝑛 −
𝐴

2
(𝜃𝑛 + 𝜂𝜃𝑛

′) + 𝛿𝜃 
𝜂

0

𝜂

0
𝑑𝜂𝑑𝜂                        (4.25) 

For practical numerical computation , we take the m-term approximation of 𝑓 𝜂 𝑎𝑛𝑑 𝜃(𝑛) as  

𝜙𝑚  𝜂 =  𝑓𝑛(𝜂)𝑚−1
𝑛=0 and 

𝜔𝑚  𝜂 =  𝜃𝑛(𝜂)

𝑚−1

𝑛=0

 

 

IV. Results Analysis 
The recursive algorithms (4.22)–(4.25) are programmed in MATLAB. We have obtained upto 15th term of 

approximations to both 𝑓 𝜂 𝑎𝑛𝑑 𝜃(𝑛) . The first few terms are given as follows: 

𝑓0 𝜂 = 𝜂 +
𝑎𝜂2

2
 

𝑓1 =  
𝐴

6
+

1

6
 𝜂3 +  

𝐴𝑎

16
+

𝑎

24
 𝜂4 +  

𝑎2

120
 𝜂5 

𝑓2 =  
−𝑎3

40320
 𝜂8 +  

𝑎2𝐴

1120
−

𝑎2

5040
 𝜂7 +  

𝑎𝐴2

192
+

𝑎𝐴

240
+

𝑎

720
 𝜂6 +  

𝐴2

60
+

𝐴

60
 𝜂5 

And 

 

𝜃0 𝜂 = 𝑏 − 𝜂 

𝜃1 = Pr⁡  
2𝑏 + 𝐴𝑏 − 2𝑏𝛿

4
 𝜂2 +  

𝛿 − 𝐴 + 𝑎𝑏

6
 𝜂3 −  

𝑎

24
 𝜂4  

 

 

 

 

 

𝜃2 = 𝑃𝑟  
𝑏

24
+

𝐴𝑏

24
−

𝑃𝑟𝑏

24
+

𝐴𝑃𝑟𝑏

24
+

𝐴2𝑃𝑟𝑏

32
+

𝑃𝑟𝑏𝛿2

24
−

𝐴𝑃𝑟𝑏𝛿

12
 𝜂4

− 𝑃𝑟  
𝐴

60
+

𝑃𝑟𝛿

60
−

𝑎𝑏

120
+

𝐴2𝑃𝑟

60
+

𝑃𝑟𝛿2

120
−

𝐴𝑃𝑟

60
−

𝐴𝑃𝑟𝛿

40
−

𝐴𝑎𝑏

80
+

𝑃𝑟𝑎𝑏

60
−

𝐴𝑃𝑟𝑎𝑏

60
+

𝑃𝑟𝑎𝑏𝛿

120

+
1

60
 𝜂5 − 𝑃𝑟  

−𝑎

240
+

𝐴𝑎

160
−

𝑃𝑟𝑎

240
−

𝑎2𝑏

720
+

𝐴𝑃𝑟𝑎

1440
+

𝑃𝑟𝑎𝛿

720
+

𝑃𝑟𝑎2𝑏

360
 𝜂6 +  

𝑃𝑟𝑎2

1008
−

𝑎2

1260
 𝜂7 

 

 The undetermined values of a and b are computed using the boundary conditions at infinity in (4.8). 

The difficulty at infinity is tackled by applying the diagonal Padé  approximants Boyd (1997). that approximate 

𝑓 ′ 𝜂 𝑎𝑛𝑑 𝜃 𝜂 𝑢𝑠𝑖𝑛𝑔 𝜙15
′ 𝜂 𝑎𝑛𝑑 𝜔15 𝜂 . Applying infinity to the diagonal Padé approximants [N/N] that 

approximates 𝑓 ′ 𝜂 𝑎𝑛𝑑 𝜃 𝜂  ranging value of N from 2 to 10 provides a two by two system of non linear 

algebraic equation, then obtained nonlinear system are solved by employing Newton Raphson method. The 

numerical results of a and b obtained are shown in the following Tables. 

 

Table 4.1: Comparison of local nusselt number at A=0 and δ = 0 for various values of Pr obtained using ADM 

and FADM with previously published results. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Pr 

Present Result  

 

Elbashbeshy et al. 

(2010) 

 

 

Ishak et al. (2008) 

 

Exact solution 

(1965) 
ADM- Padé 

of [6/6] 

FADM- Padé 

of  [6/6] 

0.72 0.808 0.8081 0.808 0.8086 0.8086 

1 1 1 1 1 1 

10 3.9921 3.7205 3.7207 3.7202 3.7206 
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Table 4.2: Comparison of skin friction coefficient and local nusselt number for Pr=1 and δ = -2 at different 

values of A obtained using ADM and FADM . 
 

 

 

A 

Present Result Elbashbeshy et al. (2010) 

f ''(0) 1 /  (0) f ''(0) 1 /  (0) 

ADM-Padé of 

[6/6] 

FADM 

Padé of 

 
[6/6] 

ADM- 

Padé of 

 
[6/6] 

FADM 

Padé of 

 
[6/6] 

0 

0.8 

1.2 
2 

1.0108 

1.3227 

1.4528 
1.6838 

1.0057 

1.3219 

1.4533 
1.6828 

1.786 

1.8544 

1.8906 
1.9676 

1.7851 

1.8541 

1.8904 
1.964 

1 

1.3218 

1.4535 
1.6828 

1.7844 

1.854 

1.8904 
1.9635 

 

Table 4.3: Comparison of skin friction coefficient and local nusselt number for Pr=1 and δ = 0 at different 

values of A obtained using ADM and FADM with previously published results. 
 

 

A 

Present Result Elbashbeshy et.al. (2010) 

f ''(0) 1 /  (0)  

f ''(0) 

 

1 /  (0) 
ADM-Padé 

 
of [6/6] 

FADM-Padé 

 
of [6/6] 

ADM-Padé 

 
of [6/6] 

FADM-Padé 

 
of [6/6] 

0 

    0.8 
1.2 

2 

1 

1.3219 
1.4536 

1.6831 

1 

1.3218 
1.4535 

1.6828 

1.0056 

1.1352 
1.2078 

1.3355 

1 

1.1362 
1.207 

1.3345 

1 

1.3218 
1.4535 

1.6828 

1 

1.136 
1.207 

1.3345 

 

 
Fig. 4.1 Velocity profiles 𝑓 ′(𝜂) for various values of A when Pr= 1 and δ = −2 Using𝜑′

15 10
10  

. 

 

 
Fig. 4.2 Velocity profiles 𝑓 ′(𝜂) for various values of A at Pr= 1, δ = 0.1 Using 𝜑′

15 10
10  

 . 
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Fig. 4.3 Temperature profiles 𝜃(0) for various values of Pr at A = 1.2 and δ = -1 Using 𝜔15 10

10   . 

 

 
Fig.4.4 Temperature Profiles for various values of Pr at A=0.8 and δ = -0.1 using 15[8/8] . 

 
Fig. 4.5 Temperature profiles 𝜃(0) for various values of A at Pr= 1 and δ = 0.1 using 15[8/8]  . 

 

From Figs.4.1 and 4.2, we note that when unsteadiness parameter A increases,the velocity profiles 

decreases.This implies that the skin friction coefficient increases.In Figs. 4.3 and 4.3 we note that when Prandtl 

Number (Pr) increases that implies the temperature decreases within the boundary layer for all values of the 

Prandtl number.This is consistent with the well-known fact that the thermal boundary layer thickness decreases 

with increasing Prandtl number. In Fig 4.5 we note that when unsteadiness parameter A increases the 

temperature Profiles is decreases. 
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V. Conclusion 
 The Adomian decomposition method and Modified Adomian decomposition method is applied to solve  

a system of two nonlinear ordinary differential equations with the specified boundary conditions that describes 

Heat transfer over an unsteady stretching surface with variable heat flux in the presence of a heat source or sink. 

The obtained solutions have matched with the existing numerical result.The Adomian decomposition method 

and Modified Adomian decomposition method techniques are very efficient alternative tools to solve nonlinear 

models with infinite boundary conditions. 
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